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Abstract:

Functions that are symmetric in both variable labels and variable values are
important for use as benchmarks. We present the properties of such functions, showing
that they are isomorphic to partitions on n (the number of variables) with no part greater
than r (the number of logic values). From this, we do an enumeration. Further, we derive
lower bounds, upper bounds, and exact values for the number of prime implicants in the
minimal sum-of-products expressions for certain subclasses of these functions.

1. Introduction
A variable/value symmetric function remains unchanged if

1. the variables are permuted and/or
2. the logic values of all variables are permuted.

In the binary case, for example, the Exclusive OR function, f(x,x,)=x,®x,, is
symmetric. Thus, if the variables are interchanged, the function remains unchanged. This
can be expressed as f(x,,x,)=x,®x, =x,®x,. If the logic values of all variables are

interchanged, the function is also unchanged. This can be expressed as
JS(x,x,) =X ®X, = x, Dx, . Thus, the Exclusive OR function is variable/value symmetric.

We are motivated to study multiple-valued variable/value symmetric functions
because of the discovery [7] of a class of swo-valued variable/value symmetric functions
that defeat simplification algorithms which produce irredundant sum-of-products
expressions. Indeed, the Minato-Morreale [3,4] algorithm does the worst that it can do on
such functions. That is, it produces the largest number of prime implicants in irredundant
sum-of-products expressions for specific variable/value symmetric functions. The problem
has a significant practical implication. The ratio of the number of prime implicants in
functions derived from variable/value symmetric functions for the worst case is an
arbitrarily large constant times the number of prime implicants in the best case, as n, the
number of variables increases without bound. Thus, the Minato-Morreale algorithm may
not only do poorly; it can do very poorly. This suggests the importance of understanding




such functions, since most algorithms, like the Minato-Morreale algorithm, produce
irredundant sum-of-products expressions.

Variable/value symmetric functions have another significant practical implication.
They are easy to generate (by computer), and they are tractably analyzed. Yet, they are
difficult for current algorithms to minimize. Thus, they are ideal benchmark functions [6].

2. Background

Definition 2.1: f(x,,x,,..,x,) is a variable symmetric function iff f (X,,%,,...,%,) i
unchanged by a permutation of the variables.

Definition 2.2: f(x,x,,...,x,) is a value symmetric function iff f(x,x,,...,x,)1s
unchanged by a permutation of the logic values of al/ variables.

Definition 2.3: f(x,,x,,..,x,) is a variable/value symmetric function iff
S (x,x,,...,x,) is a variable symmetric function and a value symmetric function.

There is a long history of work on variable symmetric functions (also called symmetric
functions or fotally symmetric functions), including multiple-valued variable symmetric
functions [2,5,8]. We know of no formal study of variable/value symmetric functions.

Example 2.1: The constant functions are trivial variable/value symmefric functions. The

truth table below shows two nontrivial variable symmetric functions on two three-
valued variables. Of these, f, is variable/value symmetric.

Table 2.1. Examples of 2-variable 3-valued variable/value symmetric functions.

xl x2 f; -f2
0 0 1 2
0 1 2 1
0 2 1 - 1
1 0 2 1
1 1 0 2
1 2 1 1
2 0 1 1
2 1 1 1
2 2 2 2

Observation 2.1: A symmetric function is characterized by a set S of alpha vectors each .
of the form [@,,@,,...,, ], where @, is the number of variables that have logic




value i. Specifically, for all assignments of values to the variables that correspond
to a single alpha vector in S, the function has one value, 0, 1, ..., or r-1.

Example 2.2: The alpha vectors of the functions in Table 2.1 are shown in Table 2.2
below.

Table 2.2. Alpha vectors of the functions shown in Table 2.1.

2 o a | A >
2 0 0 1 2
1 1 0 2 1
1 0 1 1 1
0 2 0 0 2
0 1 1 1 1
0 0 2 2 2

Observation 2.2: Since o, +a,+..+a,_, = n, each alpha vector corresponds to an r-part

composition on integer n, where each part is non-negative. For each alpha vector,
the function value can be chosen in r ways. Thus, the number of symmetric

+r—1

: . ("ril ) n+r-1 . o .

functions is r , Where . is the number of compositions on 7 into r
y—-

parts, where each partis 0, 1, 2, ... . Specifically, a composition can be chosen by

n+r-1
selecting r objects from » with repetition. This can be done in ( . ) ways.

Observation 2.3: Since a variable/value symmetric function is a symmetric function in
which the variable logic values can be permuted without changing the function, a
variable/value symmetric function corresponds to an r-part partition on integer n,
where each part is 0, 1, 2, ... . For each partition, the function value can be
chosen in r ways. Thus, the number of variable/value symmetric functions is 7™,
where P(n,r) is the number of partitions on » into 7 parts.

Observation 2.4: A variable/value symmetric function is characterized by a set S of beta
vectors each of the form [B,,5,..... B, ], where S, is the number of variables that
have logic value 7, and f, 2 B,_, 20. Specifically, for all assignments of values to

the variables that correspond to a single beta vector or any permutation of the
vector, the function has one value, 0, 1, ... , or »-1. Note that the index, i, of
B; does not represent a specific logic value, as in the case of alpha vectors.




Example 2.3: The beta vectors of the function f, in Table 2.2 are shown in Table 2.3
below.

Table 2.3. Beta vectors of the function £, shown in Table 2.2.

In this example, the function is 2 if two of the variables are 0, two are 1, or two are 2.
Further, the function is 1 if one variable is 0 and one is 1, one variable is 0 and one is 2,
one variable is 1 and one is 2. We can represent the beta vectors of Table 2.3 by a
Ferrar’s Graph as shown in Fig. 2.1 below. Here, a part of size 7 in the beta vector is
represented as a line of 7 (large) dots.

[ ]
o . . ® o .
12,0, 0] [1, 1, 0]

Figure 2.1. Ferrar’s diagram of the beta vectors of the function £ shown in Table 2.1 .

Fig. 2.1 shows that a beta vector is a partition of » into » or fewer parts. Note that a
Ferrar’s Graph rotated 90 degrees is also a Ferrar’s Graph. This shows that a partition of
n into r or fewer parts corresponds to a partition of 7 with no part greater than r. This
allows us to make the following statement.

Lemma 2.1: The number of n-variable r-valued variable/value symmetric functions is
r®’, where g, is the number of partitions on # with no part greater than 7.

It should be noted that 7% includes functions on fewer than » variables, since one choice
among those enumerated is all logic values the same; i.e. a constant function. We can
calculate g, as follows. Let G,(x) be the ordinary generating function for the number of
partitions on # with no part greater than . Specifically,

2
G (x)= 8o, T8,X+&, X +. 48, X"+,

where g, is the number of partitions on » with no part greater than ». By Lemma 1, we
can express G,(x) as




where each polynomial factor represents the number of ways the parts, 1, 2, ... and 7, of
various values can occur. From this, we can express G(x) as

1

&)= o)A

Using a polynomial package (in our case, MACSYMA), we can derive G(x) for various 7.
For example,

G,(x)=1+x+2x> +2x° 3% 43 455+ 4x7 455 4 55 +6x"0 ++6x" +7x 4.

G,(x) =1+x+2x? +3x° +4x* +5x° + 7x® +8x7 +10x* +12x° +14x"° +16x" +19x"%+...
G,(x) =1+ x+2x* +3%° +5x* +6x° + 9x° +11x7 +15x* +18x° +23x'° +27x" +34x124
G,(x) =1+x+2x* +3x° +5x* + 7x° +10x° +13x7 +18x® +23x° +30x" +37x" +47x"+...

Gy(x) =1+x+2x* +3x° +5x* +7x° +11x® + 14x” +20x® +26x° +35x"° +44x" +58x"%+...

3. Properties of variable/value symmetric functions

Lemma 3.1: A value symmetric function on two r-valued variables is variable symmetric,
forr>2.

Proof: Since there are two variables, there are two possibilities; the variable values are
the same or they are different. If they are the same, interchanging them leaves the
function unchanged. If they are different, since it is value symmetric, any
permutation of the logic values leaves the function unchanged, including
permutations that interchange the two values. Since interchanging the two values

leaves the function unchanged, it is variable symmetric.
Q.E.D.

Lemma 3.1 does not extend to value symmetric functions on three or more variables. For
example, f(x,x,,X;) =XX,X; v Xx,X, is value symmetric but not variable symmetric.
From the observation in the proof of Lemma 3.1, we can conclude the following,

Corollary 3.1: The number of two variable 7-valued functions that are value symmetric
(and variable symmetric) is 7* for all 7 >2.

Alternatively, one can show that the coefficient of x* in G,(x)is 2 for all » > 2.




We now consider a special type of variable/value symmetric function.

Definition 3.1: Let S7(n,k) be an n-variable function that is 1 when there are at least £

variables that are 0, & that are 1, ... , and £ that are 7-1. ST, An,k) = 0 otherwise.
Specifically, it is symmetric because its value depends only on the number of
variables that are 0 and 1. ST,(k) is variable/value symmetric because the
function specification is the same for all logic values; i.e. there is symmetry among
the logic values.

Example 3.1: When r = 2, ST,(n,k) is a two valued logic function that is 1 iff there are

one or more 0’s and one or more 1’s among the variable values. Algebraically, this
can be expressed as ST,(3,1) = (x{ vxyv.vx)(x; vxiv..vx!). In the case of
ST5(3,1), where the variables are ternary, ST 3(3,1) is the OR of six minterms, in

which each minterm represents a way to permute 0, 1, and 2.

Example 3.2: The beta vectors for S7- 2(6,1) , ST5(6,2), and ST»(6,3) are shown in Table
3.4 below. The beta vectors for S73(6,1) and ST3(6,2) are shown in Table 3.5

below.

Table 3.4. Beta vectors for S75(6,1) , ST(6,2), and ST5(6,3) .

A B | SLED | SL62) | ST63) | SE6D | Sh62) | SL63) | Sen | snen STes)
logiovalue | logicvalue | logiovalue | #minterms | #minterms | #minterms | ot | covered/#Pls | covered#Pls
covenjg covenjg coverinL
6 0 0 0 0 0 0 0 - - -
5 1 1 0 0 12 0 0 2/5 - -
4 2 1 1 0 30 30 0 8/8 2/6 -
3 3 1 1 1 20 20 20 6/9 2/9 1/1
Total 62 50 20 16/ 4/ 1/
Table 3.5. Beta vectors for S73(6,1) and ST3(6,2) .
A B B | SKED | SK62) | ShED | SKe2) | sten | smen
logic value logic value # minterms # minterms covered/#PIs | covered/#PIs
) covering covering

6 0 0 0 0 0 0 - -

S 1 0 0 0 0 0 - -

4 2 0 0 0 0 0 - -

4 1 1 1 0 90 0 3/4 -

3 3 0 0 0 0 0 - -

3 2 1 1 0 360 0 18/6 -

2 2 2 1 1 90 90 6/8 1/1

Total 540 90 27/ 1/
6




Tables 3.4 and 3.5 also show the number of minterms associated with each beta
vector. The totals of the number of minterms is shown, as well. Thus, for $75(6,1),
8$Tx(6,2), and S75(6.3), the total number of minterms covered is 62, 50, and 20,
respectively (out of 64). For S75(6,1), and S73(6,2), the total number of minterms
covered is 540 and 90, respectively (out of 729).

Also shown in Tables 3.4 and 3.5 are the number of minterms each prime implicant
covers of the type of minterm shown and the number of prime implicants that cover a
specific single minterm of the type shown. So, for example, the minterms of S75(6,1),
associated with beta vector [5,1] have the property that each prime implicant covers 2
minterms with that beta vector, and, conversely, each minterm with that beta vector is
covered by 5 prime implicants. Thus, the corresponding entry is 2/5. We examine this in
depth now.

Definition 3.2: Literal ¥’ =1if x €S ; otherwise x’ =0,

Example 3.3: Ifxis a 3-valued variable, then x'** =1ifxis 0 or 2 and x'*# =0 if x is
1.

For convenience, if S consists of exactly one element, then we omit {}. Thus, x" is

written as x'. Note that x%* "V is a constant 1.

Definition 3.3: Let f{x;,x,,...,x,) be a two-valued function with r-valued variables.
P=xPx?.x¥» is an implicant of f , if f dis 1 whenever
x, €8,x,€8,,andx, €S,. P is a prime implicant (PI) of f if P' is not an
implicant of f, where P' is the same as P except some S, is replaced by S,', where

$'DS,.

P is a prime implicant if all literal sets S; are as large as they can be.

Example 3.4: xx,x; = ¥ x,x, is an implicant of S7»(3,1) because, when x’x}x} is 1

(when x;, =0, x,=1,and x, =1), ST5(3,1) is also 1. However, it is not a prime
implicant, because x x{"x, = xx; is an implicant of ST»(3,1) . However, x’x] is
a prime implicant because enlarging any of its literal sets causes it not to be an
implicant.

Observation 3.5: x,.‘l’xi]2 is a prime implicant of S73(n,1), where i ,i, €{1,2,...,n} and _

ii#i,.  Also, x)x,.x'is a prime implicant of S7/(m1), such that
I,i,,...01, €{l2,...,n} and all § are distinct. Further,
xxt xX x x . x o x7.x[' is a prime implicant of STy(n,k),

T T [P0 St TSP 9

such that 7,i,,...i, €{1,2,...,n} and all j;are distinct.




Theorem 3.1: ST,(#,k) has
: n!

(KY (n-kr)!

prime implicants.

Proof: The prime implicants of S7, An,k) have the form

xOxO 0 1 1 1 r-1 r-1 r-1

AT T Tk T T iy ik T i

Specifically, this expression is 1 when all & variables in a specific set ({x,x, ...x, })

are 0, when all £ variables in another specific set ({x, x ..X, })arel, ... and

kel ka2

when all & variables in another specific set ( {x, .x, })arer-1. On the

(r-1k+1 xi(r-l)h-z v
contrary, if some variable has fewer than k representatives, then the corresponding
product term is 1 when fewer than % of those variables are 1, and thus the function
has this property, contradicting the fact that the function is ST, Ank). If some
variable has more than & representatives, then deleting literals so there are exactly &
representatives creates an implicant of the function that is implied by the original
implicant; thus, the original implicant was not prime.

There are n!/{(k!) (n- kr)!} implicants of this form. Specifically, each
implicant corresponds to a permutation of 7+1 objects, where 7 of the objects (the
logic values) each occur as k& identical objects and one object (variables not
included) occur as r-kr identical objects.

Q.E.D.

Example 3.5: Consider the functions in Tables 3.4 and 3.5. From Theorem 3.1, $STy(6,1),
8Tx(6,2), and ST»(6.3) have a total of 30, 90, and 20 prime implicants,
respectively, while S73(6,1), and ST73(6,2) have a total of 120 and 90 prime
implicants, respectively.

Lemma 3.2: Each prime implicant in ST(n,k) covers "™ minterms.

Proof: The prime implicants of S7,(n,k) have the form

xOxO xO xl xl 1 r-1 r-1 r~-1

7R T Ve i T Vigiyin e Vi
There are n-rk variables not included, whose values can each be chosen in 7 ways.
Each different specification represents a minterm covered by the prime implicant.

Q.E.D.




Example 3.6: Consider the functions in Tables 3.4 and 3.5. From Lemma 3.2, the prime
implicants of S75(6,1), S75(6,2), ST»(6,3), STx(6,1), and ST3(6,2) cover, 2°=4,
2°=1, 3°=27, and 3%=1 minterms, respectively. This is shown in Tables 3.4 and 3.5
in the last three column of the last row. So, for example, the 2* = 16 minterms
covered by prime implicants of S75(6,1) are distributed to minterms associated
with beta vectors [5,1], [4,2], and [3,3] as 2, 8, and 6 respectively.

. The following lemma represents an observations about sum-of-products
expressions for ST,(n,k) functions that will be useful later when one already has one sum-
of-products expression. ‘

Lemma 3.3: Let F be a sum-of-products expression for STyn,k). Let F° be a sum-of-
products expression derived from F by permuting all variable labels j in X,

according to permutation 7z,.: {1,2,...,n} = {1,2,...,n} and by permuting all

logic values i of xj. according to permutation 7 _,,.:{0,1,....r =1} > {0,1,....,r -1} .
Then, F” is a sum-of-products expression for ST(7,k).

Proof: The statement follows from the fact that ST,(n,) is unchanged by a permutation

of variable labels and logic values.
Q.E.D.

Lemma 3.3 simply states that, although S7(#,%) is unchanged by a permutation of
logic values and variable labels, a sum-of-products expression for. S7)(n,k) may be
changed. '

Lemma 3.4: Every prime implicant of S7,(n,k) occurs in an MSOP of ST(,k).

Proof: Consider any prime implicant P of S7(n,k). Consider a prime implicant P’ in an
MSOP of §7,(n,k). By a permutation of variable labels and logic values, we can
convert P’ into P.  Applying this permutation to all prime implicants in the MSOP
yields an MSOP that contains P.

Q.E.D.

We are interested in the number of prime implicants in the minimal sum-of-
products expression (MSOP) expression of ST,(n,k). Tables 3.4 and 3.5 provide an
insight on this. For example, in Table 3.4, we see that for S75(6,1), there are 12 minterms
associated with beta vector [5,1] and (from the third column from the left) each prime
implicant covers 2 minterms in this group. It follows that at least [12/ 2.|= 6 prime
implicants are needed in the MSOP of S7(6,1),. From beta vector [4,2], at least
[30/8]=4 prime implicants are needed, and from beta vector [3,3], at least [20/6]=4
prime implicants are needed. Beta vector [5,1] provides the greatest restriction, and we

have a lower bound on the number of prime implicants for S75(6,1) of 6 prime implicants.
In a similar manner, we can calculate a lower bound on the number of prime implicants of




8§7x(6,2), STx(6.3), ST5(6,1), and ST5(6,2) as 15, 20, 30, and 90, respectively. In general,
we can state '

Theorem 3.2: A lower bound on the number of prime implicants in the MSOP of
ST(n1)is
n!
(n-r+1)!°

Proof: Consider a set .S of minterms corresponding to beta vector [n-r+1,1,1,...,1]. The
number of minterms in S is rn!/(n-r+1)!, whenn > r and n! whenn=r. Ifn>vr,

each prime implicant, x/x; ...x]"', covers r minterms in S, since there are r ways to
choose the variable values not in x/x; ...x/™. Ifn=r, there are no other values to

specify. Thus, for both #>r and n =7, at least n!/(n—r +1)! prime implicants are
needed.

Q.E.D.

Consider now an upper bound on the number of prime implicants in an MSOP for
8§T.(n,1). Any sum-of-products expression for ST,{#,1) has the form

b0 DRVE VIRV ) VY O (1)

where F; and F' are sum-of-products expressions on xi, X, ... , and x,.;. Each contains
literals of the form x,-", where 0<k<r-1. In the case of F, k=i, while F is
unrestricted. That is, both contain all variables except x,. F contains literals of the form
x! foralli e{0,1,...r - 1}, while F; does not contain the literal x/. For example, an MSOP
for §75(4,1) can be written as'

ST,(3,1) = x0x; vxix v xox, |
which can be verified by a Karnaugh Map. From Lemma 3.3, it follows that by permuting
the logic values (in this case, complementation) or by permuting the variables, we can
obtain another MSOP.

ST,(3,) = x2x] vxgx; v x'x) .
As another example, an MSOP for $75(4,1) can be written as

STL(AD = x,(ax3 v vinn) v x(ex v ] vx)

@
2 0,.1 0..1 0,.1 0..1..2 0..1..2 0,.1,.2
VX (gx vx, v x) v (XX v X xx v oxax x2

It is straightforward (but tedious) to verify that this is indeed is a sum-of-products
expression for §75(4,1). To verify that it is minimal requires some insight.

Lemma 3.5 If x,F, vx,Fv..vx'F_ v Fis an MSOP of ST,.,(n-1,1), then

1. Fis an MSOP of 8T,.,(n-1,1) on logic values {0,1,...,7-1}-{7}, and

10




2. Fis an MSOP of S7,(n-1,1) with (consensus) terms removed that are also
covered in x F, vx.Fv. vx"'F_ .

Proof: When x,=i, ST{(n,1) = F;, and F; is $7..1(n-1,1) on logic values {0,1,...,r-1}-{i}.
The expression for F; must be an MSOP of S7,.,(n-1,1); otherwise, it can be
replaced by an MSOP, thus reducing the products in the expression for S7,(n,1),
contradicting the statement that S7,.;(»-1,1) is an MSOP. Consider a minterm m
covered by S7;.1(n-1,1) which has at least one 0, one 1, ..., and one r-1 among x;,
X2, ... , and x,.;. Then, m is covered by a prime implicant that is in F or is a
consensus term among x F, vx,Fv..vx,"'F_ or both. Among all terms must be

an MSOP for ST.(n-1,1); otherwise xffE) vx,Ev.vx'F_vF is not an
irredundant SOP for S7,(n,1). Property 2 follows from this observation.

Q.E.D.

If we add the consensus terms to F, forming F°, we obtain the followmg
expression.

_ 0 1,02 ,.02 .02
SLAYD =x2(x)x2vx, x2vaxl) v o x(xxl v xdx2vxlxl) 3)
1
v oxI(axvxsxvxex) v (exax? v xixixl v xgxexl v xsexi v xlxh x2 v xixix?l)

The last three terms are each redundant. F” is an MSOP for S73(3,1); it is the OR of
minterms representing all 6 ways to permute three logic values among three variables. In
this expression, the F;terms are minimal, but F” is not. Therefore, this expression would
be an MSOP if F~ has as few terms as possible, which means that the largest number of
terms of F~ should be covered by the F;terms. However, no more than three such terms
can be covered collectively by the F;terms. It follows that the original expression (with
the last three terms removed) is an MSOP.

The two conditions of Lemma 3.6 are necessary as the proof shows. They are
not sufficient. That is, the irredundant sum-of-products expression for S73(4,1) satisfies

ST =xs(xx v xivaxl) v o x(xXx2 v xx2 v xix?)

4)
0,12 0.1..2 0,.1..2 0.1.2 0.1.2
VoxI(xxi vt vasx) v (XXl v xexxl v X v xsxixi v x)xs x2 v xyxxt)

the two conditions, but it is not minimal. This is the above equation with the F; term
modified.  Specifically, too few (none) product terms in F appear as consensus terms
covered by the F;terms. Fig. 3.1 below shows a graph representation of the F; terms in
both expressions. In this figure, an arc represents a prime implicant in an F; term.
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(b)

Figure 3.1. Graph representation of the F; terms in (3) and ((4).

For example, x;x, is represented as an arc labeled by the logic values 01 from node 3

representing x; to node 2, representing x,. The fact that xJx} v xx} v x°x! is an MSOP of

STs(2,1) is seen in the graph by the cycle of arcs labeled 01 from x; to x5, x, to xy, and x;
to x;. Similarly, the arcs labeled 12 form a cycle, as do the arcs labeled 20. A consensus
term occurs also as a cycle. For example in Fig. 3.1a, there is a consensus term x)xx2

associated with the 01 arc from 1 to 3, the 12 arc from 3to 2, and a 20 arc from 2 to 1.
Notice in Fig. 3.1b, there are triples of arcs of this type and thus no consensus terms.

How can we produce an MSOP:s for §7,(n,1)?
Algorithm: Produce an MSOP for ST,(»,1) given an MSOP for ST, A(n-1,1).

1. Set F of ST«(n,1) equal to the MSOP of ST,(n-1,1).
2. Form the largest set of prime implicants in F as consensus terms and form F,,
Fy, ..., F.i.. Remove these terms from F.

We illustrate by an example. Form an MSOP of S73(5,1) from an MSOP of ST 3(4,1) as
follows. Specifically, use the MSOP shown in (2).  Consider the consensus terms to
remove. F; will be an MSOP on 4 variables and 2 logic values. . Fig. 3.2 below shows that

we can create at most two consensus terms, x;x,x. v xjxx?. Indeed, this figure was

generated by first drawing the largest number of consensus terms and then completing it
so that the F; terms formed MSOPs. The SOP so formed is

0,,.1.2 1.2 1.2 1.2 10,02 0 .2 0,.2 0,2
ST(4.1) = x5 (xx; v x; X5 Vx5 vV x,xl) v xd (xXx2 v x? X3 VXX, VXX))

20,01 0 1 0,1 0,.1
VX5(X) X, VX, X3V X3Xy VO X,X,)

01,2 0.1 2 0.1..2 1,02 1,.0..2 1,02
VXX X5 N XXy Xy VXXX NV XXX, N Xy Xp X NV XX XS
2,01 2,01 2,01 0..1..2
VXX XV XXX, VXX X, VXXX,
12




This proves that the MSOP for S75(5,1) has 3x4 + 12-2=22 prime implicants,
which is two more than the lower bound given in Theorem 3.2.

Figure 3.2. Graph representation of the F; in the formation of an MSOP of $75(5,1)

For specific values of » and r (= n-1), we can determine the exact number of prime
implicants in the MSOP. Figure 3.3 below shows a graph representation of the sum-of-
products expression of S75(3,1). Here, nodes represent prime implicants of S7>(3,1) and
edges represent minterms covered by prime implicants.  Specifically, each minterm is
covered by two prime implicants (e.g. minterm 011 is covered by 0*1 and 01*), which
correspond to the two nodes (0*1 and 01*) incident to the edge (011). The problem of
finding an MSOP is identical to the problem of finding a set .S with the fewest nodes such
that each edge is incident to at least one node in S. From Figure 3.3, it can be seen that
there are two sets each with nodes that satisfy this criteria. These represent two MSOPs.

o 1 =
o1 o1
0*1] *0] @
or* O Q
& IRES

Figure 3.3. Graph representation of prime implicants and minterms for S75(3,1).

of

"

Theorem 3.3: The number of prime implicants in an MSOP of $7,.1(s, 1) is
n!

5
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Proof: Consider a graph G(V,E), where V is the set of prime implicants of S7,.1(n,1) and
E is the set of minterms of S7,.,(n,1). Each minterm m has the form Xpx2.. . x
where each logic value {0,1, ... , »-2} occurs as one I; , except one (repeated)
logic value that occurs twice. Let the repeated logic value be i, and i, The two
prime implicants that cover m have the form 1) xix?..x", where x%is omitted

(ie. replaced by x!*'~"* =1) and 2) xjx?..x", where x"is omitted (i.e.

replaced by x*"* =1).  Note that there are 7! prime implicants; each
corresponds to a permutation on the elements {0,1, ... , n-2, *} where O, 1, ...,
and n-2 are the #-1 logic values whose position determines the literal with that
logic value and * represents the missing variable.

We now show that G is bipartite. From this, it follows that the nodes in the
part with the fewest nodes represents an MSOP of ST, -1(n,1). However, from
Theorem 3.2, a lower bound on this number is #!/2. Since the total number of
nodes is n!, and both parts have no less than 7!/2 prime implicants, it follows that
both have exactly this number. Therefore, there are two MSOPs of ST, »1(n,1) each
with n!/2 prime implicants.

Consider a minterm m and the two prime implicants, P; and P, that cover
m. Let P, and P, have the representation shown below in Fig. 3.4. Specifically,
Py is represented as igiy ... iy * iy ... Iny, @ compact representation of
XPX.xE R xR Since dgiy ... dpy * igt1 ... Inq iS a permutation of the

s s+2°°°%n
elements {0,1, ... , n-2, *}, it can be represented as a directed graph (the cycle
Py : P
(= i) =

L 2
S IS(—II"‘_'j s

R JEELINTE FOTRE FRY NPy

Remainder of cycle
structure repre-
sentation of P,

Remainder of cycle
structure repre-
sentation of P,

-7 "W -Directed path

———» - Directed arc

Figure 3.4. Cycle structure of prime implicants, Py and P,, which both cover the same
minterm m.
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structure representation) where the nodes correspond to elements of {0,1, ... , -
2, *}, and the arcs are 0—i, 127, .., *>i,. . ,andn-1—>i_ for

i;€{0,,...,n-2*}  Similarly, let P, be represented as iofy ... ir1 * iry ... Ina.

The minterm covered by P; and P, is therefore iofy... is.q is ey ... Br1 dt Bpe1 ... B,
where i,=i; Consider the cycle structure representation of P;. There are two
possibilities 1) * and i;=/, are in the same cycle or 2) * and i;=i; are in different
cycles. In Fig. 3.4, the case where * and i;=i, are in the same cycle is shown.
Note that the cycle structure of P, is the same as that of P; except that the arc
from s to * is replaced by an arc from s to i;=i, while the arc from ¢ to i;=i; is
replaced by and arc from 7 to *. As a result, the single cycle of P; becomes two
cycles in P,. This is shown in Fig. 3.4. Conversely, if * and 7,=i, are in different
cycles in P, it can be seen that these two cycles become one in P,. From this, it
follows that G is bipartite, where one part corresponds to all permutations with an
even number of cycles and the other part corresponds to all permutations with an

odd number of cycles.
Q.E.D.

From the above discussion, we can state
Corallary 3.2: S7,.,(n,1) has two MSOPs.
We can now prove the following

Lemma 3.7: An upper bound on the number of product terms in MSOP for $7:(», 1) for
2<r<6is

Table 3.6. Upper bounds on the number of prime implicants in S7,(n, 1).

r oo Upper Bound 0
2 n
3 3303
2 2
4 2n° —6n* —8n+24
> zn“ -157° +§n2 —32n-330
2 2

Proof: Let U(n,r) be an upper bound on the number of prime implicants in the MSOP of
ST(n1). From our previous observation on the decomposition

XXFvxlFv. vx'F_ v F of ST(n1), F, must be an MSOP of ST,,(n-1,1),
while F'is an MSOP on S7,(n-1,1) less consensus terms. Thus, a recursion relation
for U(nr) is

Un,r) = r Un-1, r-1) + Un-1, r).

15




Using U(n,2) = n and U(n,n)=n!, one can recursively solve for the closed form
upper bounds shown in Table 3.6.

Q.E.D.

From this result, we can state

Lemma 3.8: An upper bound on the number of product terms in an MSOP of ST, An1)
r
isO(—n"").
G7) |

Proof: From Lemma 3.7, one can recursively solve for the coefficient of the largest term

r
o(=n").
as (2n )
Q.E.D.

Lemma 3.9: For fixed 7, the number of product terms in an MSOP of ST, An1) is
o(n™ ™).

Proof: Compare the upper and lower bounds for the number of product terms in an
MSOP of ST,(n,1). ‘

Q.E.D.

4. Experimental Results

Table 4.1 below shows the results of experiments on various classes of S7. An1)
functions. Here, the number of prime implicants, as derived in Theorem 3.1 are shown in
the second column labeled No. of PIs, the number of prime implicants calculated by a
Quine-McCluskey type logic minimizer is shown in the third column labeled QM, and the
lower bound derived in Theorem 3.2 in the fourth column labeled LB. The fifth column,
labeled UB, shows an upper bound on the number of prime implicants as derived in
Lemma 3.9. The last column, labeled NWS, shows the number of prime implicants
obtained by a heuristic program designed to find an irredundant sum-of-products
expression with many prime implicants.
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Table 4.1 Number of prime implicants in total, as derived by Quine-McCluskey, lower
and upper bounds on prime implicants in an MSOP, and in a large sum-of products.

Function | No.of | B 1
ST3(4,1) 24 | 12 | * 12 24 16
ST3(5,1) 60 | ** 22 20 37.5 32
ST3(6,1) 120 33 30 54 50
ST3(7,1) 210 49 42 73.5 75
ST5(8,1) 336 70 56 96 98
ST3(9,1) 504 89 72 121.5
STy(5,1) 120 | ** 60 | * 60 250 96
ST4(6,1) 360 159 120 432 210
STy(7,1) 840 282 210 686
STy«(8,1) | 1,680 490 336 1024
ST5(6,1) 720 |a 455 | * 360 3240 600
STs(7,1) | 2,520 | b1,231 832 6002.5
STs(7,1) | 5,040 3,365 | * 2,520 50,421 4,320
ST+(8,1) | 40,320 | 32,760 | *20,160 | 917,504

* Known to be the exact number of prime implicants in an MSOP of $7,(n,1) by Theorem
3.3. ** Quine-McCluskey obtained a solution known to be an MSOP. a MINI2 obtained
a 455 prime implicant solution. » MINI2 obtained a 1,206 prime implicant solution.

4. Concluding Remarks

Functions that are symmetric in both variable labels and variable values are
important because they provide tractably analyzed functions that are difficult to minimize.
Thus, they are useful as benchmark functions. Yet, as far as we know, there has been no
formal study of such functions. In this paper, we have shown that there is a one to one
correspondence between such functions and partitions on # with no part greater than r.
We have shown how many prime implicants there are in each function, and, we have
shown upper and lower bounds on the number of prime implicants in minimal sum-of-
products expressions of a specific class of variable/value symmetric functions. For another
class of variable/value symmetric functions, we have shown the exact number of prime
implicants in minimal sum-of-products expressions.
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